Factorization Theorems on Symmetric

نویسنده

  • Piotr Graczyk
چکیده

We prove the analogs of the Khinchin factorization theorems for K-invariant probability measures on symmetric spaces X = G=K with G semisimple noncompact. We use the Kendall theory of delphic semigroups and some properties of the spherical Fourier transform and spherical functions on X.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces

‎In this paper‎, ‎we prove some theorems related to properties of‎ ‎generalized symmetric hybrid mappings in Banach spaces‎. ‎Using Banach‎ ‎limits‎, ‎we prove a fixed point theorem for symmetric generalized‎ ‎hybrid mappings in Banach spaces‎. ‎Moreover‎, ‎we prove some weak‎ ‎convergence theorems for such mappings by using Ishikawa iteration‎ ‎method in a uniformly convex Banach space.

متن کامل

WZ factorization via Abay-Broyden-Spedicato algorithms

Classes of‎ ‎Abaffy-Broyden-Spedicato (ABS) methods have been introduced for‎ ‎solving linear systems of equations‎. ‎The algorithms are powerful methods for developing matrix‎ ‎factorizations and many fundamental numerical linear algebra processes‎. ‎Here‎, ‎we show how to apply the ABS algorithms to devise algorithms to compute the WZ and ZW‎ ‎factorizations of a nonsingular matrix as well as...

متن کامل

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

Some vector fields on a riemannian manifold with semi-symmetric metric connection

In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.

متن کامل

A partial proof of Nash's Theorem via exchangeable equilibria

We give a novel proof of the existence of Nash equilibria in all finite games without using fixed point theorems or path following arguments. Our approach relies on a new notion intermediate between Nash and correlated equilibria called exchangeable equilibria, which are correlated equilibria with certain symmetry and factorization properties. We prove these exist by a duality argument, using H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007